“Independent Researcher, Librarian, Music Educator and Composer" - Ted Hunter

Patent No. 6097981 Electroencephalograh based biofeedback system and method

 

Patent No. 6097981

Electroencephalograh based biofeedback system and method (Freer, Aug 1, 2000)

Abstract

An apparatus and method with an electroencephalograph (EEG) based biofeedback system wherein a smooth, high quality computer animation is maintained while EEG responses are simultaneously being analyzed whereby the results of the analysis are then used to control the animation. EEG signals alone may be used to control computer animation. EEG signals may be sent from the head of the user to a remote receiver by infrared wireless transmission.

Notes: 

Electroencephalograph based biofeedback system and method. Filed December 1997, granted August 2000. Not in previous list. States at least one EEG signal encoded/embedded/modulated onto an infra-red (some infra-red wavelengths fall under the radio frequency wavelength description also) signal and transmitted to a computer. Shows that a computer is quite capable of comparing EEG signals (various potentials included) with previously attained ones. Shows that a computer can manipulate a display for output back to a person (or images used in the psychotronic attacks based on the analysis of the EEG signals). Also goes into using two images, one that the user (person under attack) is supposed to concentrate on and one for distraction purposes. (Good guy - bad guy routine) States that there is a 'reward' type scenario for concentrating on the image that the computer (or human controlling the system) wants the user (person under attack) to concentrate on.

SUMMARY OF THE INVENTION

The present invention contemplates an apparatus and method for improving attention with an electroencephalograph (EEG) based biofeedback system wherein a smooth, high quality computer animation is maintained while EEG responses are simultaneously being analyzed whereby the results of the analysis are then used to control the animation. EEG signals alone may be used to control a computer animation.

One embodiment of the present invention EEG based biofeedback system is particularly well suited to overcome the obstacle of the human eye being extremely sensitive to even slight interruptions of smooth motion. For example, slight pauses that could go unnoticed in a computer-based application program such as a word processor or a spreadsheet would appear as obvious glitches in smooth animation. This obstacle is overcome by the embodiment of the present invention EEG based biofeedback system through the use of two basic concepts.

First, the analysis of the EEG brain waves is not accomplished by the computer that is doing the animation. Rather, the analysis is performed by hardware frequency filters in a separate hardware unit. A set of three bandpass filters accepts the raw EEG input and outputs the amount of power in each of the three relevant frequency bands (i.e. alpha, beta, and theta frequency bands).

Second, the results of the frequency analysis are transmitted to a host computer in a way that does not disrupt the animation being performed by the host computer. This is accomplished by tuning the rate of data delivery from the separate hardware unit to the requirements of the host computer, and also by having the host computer trigger the delivery of new data. Thus, the reception of data by the host computer can be synchronized with the video frame changes, and thus blended smoothly with the animation.

Thus, in one aspect, the present invention concerns an apparatus for improving the attention of at least one user, the apparatus comprising means for generating and displaying a video animation, means for measuring electrical activity of the brain of the user, and means for altering the generation of the video animation in response to at least one user input, wherein the user input comprises the measured electrical activity. The means for altering the generation of the video animation preferably includes means for processing the measured electrical activity so as to be employable by the means for generating and displaying the video animation. The means for measuring electrical activity preferably includes at least one electroencephalographic (EEG) instrument.

The means for generating and displaying a video animation preferably includes at least one video display terminal. Preferably, the means for generating and displaying the video animation further includes means for maintaining the video animation while the measured electrical activity is simultaneously being processed.

In another aspect, the present invention concerns a game having means for generating a video animation, means for displaying the video animation, means for detecting at least one measurement of electrical activity of the brain of the user, and means for processing the electrical activity measurement into at least one indicator signal. The video animation generation means alters the video animation in response to the indicator signal. The game may be adapted to accommodate one or more users, either simultaneously or sequentially. For example, the electrical activity of the brain of at least two users may be detected and processed into at least two indicator signals.

In still another aspect, the present invention provides a biofeedback device for improving the concentration of at least one user. The biofeedback device includes means for generating a video animation, means for presenting the video animation, means for detecting at least one measurement which is indicative of the level of concentration of the user, and means for processing the measurement into at least one indicator signal. The video animation generation means alters the course of the video animation in response to the indicator signal, whereby the presentation of the video animation serves as feedback to the user corresponding to the level of concentration of the user.

Preferably, the detecting means detects an EEG response of the user, which is indicative of the level of concentration of the user. Further preferably, the detecting means detects at least one of beta waves and theta waves. In a particular embodiment, the detecting means detects both beta and theta waves. Thus, the processing means may convert at least one beta wave measurement and at least one theta wave measurement into at least one indicator signal, and the detecting means measures electrical activity of the brain of the user. the processing means preferably includes means for selectively filtering at least one frequency range of the electrical activity.

In one embodiment, the electrical activity measurement is the sole external factor upon which changes in the video animation are based.

The video animation may be altered in response to changes in the indicator signal, or the video animation may be altered in response to absolute levels of the indicator signal. The processing means is preferably capable of storing the measurement and comparing the measurement with at least one previously stored measurement. The processing means is further preferably capable of comparing the measurement to a threshold value.

In yet another aspect, the present invention concerns an apparatus which is capable of detecting at least one EEG signal of at least one user. The apparatus includes at least one EEG probe for picking up at least one electrical signal associated with the brain activity of a user, transmission means for converting the electrical signal into at least one infrared signal, and mounting means for maintaining the probe in contact with the head of the user and for mounting the transmission means on the head of the user. The apparatus preferably further includes an electrical power source, mounted on the mounting means, for energizing the transmission means.

The present invention may further comprise a system which includes such an apparatus, wherein the system further includes an infrared receiving means for receiving the infrared signal from the apparatus and generating at least one EEG signal. In a highly preferred embodiment, the apparatus and the receiving means are untethered.

The system further preferably includes a computer means and means for delivering the EEG signal to the computer means. The computer means would typically include a computer memory encoded with executable instructions representing a computer program. Preferably, the computer program is capable of causing the computer means to present a video game. Furthermore, the computer program is preferably capable of processing the EEG signal as an input into the video game.

In one embodiment, the computer program is capable of storing the EEG signal and comparing the EEG signal with at least one previously stored EEG signal. The computer program is further preferably capable of comparing the EEG signal to a threshold value. The computer program may also be capable of establishing a threshold value based upon at least one previous EEG signal. The threshold value may be stored in the computer memory. Thus, the computer program may be capable of adaptively or automatically changing the threshold value based upon a comparison between the EEG signal and at least one previous EEG signal.

In still another aspect, the present invention provides a method for improving the attention of at least one user. The method comprises the steps of: measuring electrical activity in the brain of a user; presenting a video game to the user; and controlling the video game with at least one user input, wherein the user input comprises the analyzed measured electrical activity. The method may further comprise the step of analyzing the measured electrical activity, wherein the user input further comprises the analyzed electrical activity. The electrical activity may correspond to alpha, beta, or theta waves. For example, beta and theta wave components are preferably measured in order to gauge the level of attention of a user.

In yet another aspect, the present invention comprises a method for improving the attention of at least one user by biofeedback. The method comprising the steps of: measuring electrical activity of the brain of a user; analyzing the measured electrical activity; presenting a video game having at least one game output to the user; inputting the analyzed electrical activity into the video game; and presenting to the user at least one feedback signal corresponding to the analyzed electrical activity, wherein the feedback signal is manifested by changes in the game output of the video game, whereby the user is rewarded by sensing the changes in the game output of the video game, and whereby the game output assists the user in controlling the electrical activity. The method also include providing active user inputs to the video game, such as those provided by actuation of a keyboard, mouse, trackball, pedal, touch screen, stylus, button, lever, touch pad, or the like. Preferably, the electrical activity is analyzed in a computer means having a processing means and a memory means. Furthermore, the method may include transmitting the electrical activity to the computer means by infrared signal.

Game output may include a variety of outputs to the user, such as video, audio, tactile, or other sensory reward.

A user may, for example, be rewarded for achieving at least one level of electrical activity, or for maintaining at least one level of electrical activity for a predetermined period of time.

The video game may further presents a plurality of visual images to the user, wherein the user is rewarded for identifying at least one association between at least two of the visual images and for inputting a direct user input corresponding to the association.

Alternately, or in addition, the video game may present at least one primary game output and at least one distracting game output to the user, wherein the user is rewarded for identifying the primary game output and for inputting a direct user input corresponding to the identification.

Thus, the present invention may embody, or be used in conjunction with, a protocol, such as an educational protocol or a training protocol, which incorporates hierarchical mastery of skills, including visual discrimination, auditory discrimination, and/or increased sensory perception.

Accordingly, a primary object of the present invention is to provide an apparatus and method for promoting attention or concentration, and further preferably enhancing relaxation, of a user with an electroencephalograph (EEG) based biofeedback system wherein a smooth, high quality computer animation is maintained while EEG responses are simultaneously being analyzed whereby the results of the analysis are then used to control the animation.

-------------------------------

The present invention is not to be limited in scope by the specific embodiment described herein. Indeed, various modifications of the present invention, in addition to those described herein, will be apparent to those of skill in the art from the foregoing description and accompanying drawings. Thus, such modifications are intended to fall within the scope of the appended claims. Additionally, various references are cited throughout the specification, the disclosures of which are each incorporated herein by reference in their entirety.

Comments

Popular Posts - Last 30 days

Understanding Vibration and Resonance

Video: New Brain Computer Interface Technology - Steve Hoffman | TEDxCEIBS

The Matrix Deciphered - by Robert Duncan

Secret Testing - EM-Weapon Through Satellite

Mind Control: HAARP & The Future of Technology

U.S. Government Using Electronic Torture to Mimic Mental Illness

Voice to Skull Technology (V2K)

Neuropsychological & Electronic No-Touch Torture Report by Dr. Robert Duncan (used on targeted citizens here in the U.S.)

THE SEQUEL TO THE FALL OF THE CABAL | Parts 1 - 27

Bioeffects Research for Emerging RF Technologies