“Independent Researcher, Librarian, Music Educator and Composer" - Ted Hunter

Patent No. 6497655 Virtual remote monitor, alert, diagnostics and programming for implantable medical device systems

 

Patent No. 6497655

Virtual remote monitor, alert, diagnostics and programming for implantable medical device systems (Linderg, et al., Dec 24, 2002)

Abstract

A plurality of co-operative and complementary software programs are implemented in a web-enabled high speed computer system to remotely monitor, manage and modify the operational and functional parameters of a plurality of implanted medical devices (IMDs). The system utilizes virtual electrophysiologist module (VEM), chronic monitoring module (CMM) and prescription program module (PPM) programs to effect specific therapeutic and diagnostic methods for managing the IMDs, remotely on a conditions and real-time basis. The modules enable remote and continuous monitoring, management and maintenance of the IMDs by identifying critical medical events, determining optimal clinical settings and upgrading performance parameters based on prescriptive data. The modules are implemented in a data center having high-speed computers operating in a web-enabled environment. The modules and the IMDs communicate through wireless communications system via a programmer or an interface medical unit (IMD).

Notes:

SUMMARY OF THE INVENTION

The present invention generally relates to a communications scheme in which a remote web-based expert data center interacts with a patient having one or more implantable medical devices (IMDs) via an associated external medical device, preferably a programmer, located in close proximity to the IMDs. Some of the most significant advantages of the invention include the use of various communications media between the remote web-based expert data center, the programmer and an interface medical unit to remotely exchange clinically significant information and ultimately effect real-time parametric and operational changes in the IMDs as needed.

In the context of the present invention, one of the many aspects of the invention includes a real-time access of a programmer to a remote web-based expert data center, via a communication network, which includes the Internet. The operative structure of the invention includes the remote web-based expert data center, in which an expert system is maintained, having a bi-directional real-time data, sound and video communications with the programmer via a broad range of communication link systems. The programmer is in turn in telemetric communications with the IMDs such that the IMDs may uplink to the programmer or the programmer may down link to the IMDs, as needed.

In yet another context of the invention, the critical components and embedded systems of the programmer are remotely maintained, debugged and/or evaluated to ensure proper functionality and performance by down linking expert systems and compatible software from the web-based expert data center.

In a further context of the invention, a programmer or an interface medical unit is remotely monitored, assessed and upgraded as needed by importing software from a remote expert data center via a wireless or equivalent communications system. The operational and functional software of the embedded systems in the programmer or the interface medical unit may be remotely adjusted, upgraded or changed as apparent. The software changes installed in the programmer/interface medical unit may ultimately be implemented in the IMDs as needed by down linking to the IMDs.

Yet another context of the invention includes a communications scheme that provides a highly integrated and efficient method and structure of clinical information management in which various networks such as Community access Television, Local area Network (LAN), a wide area network (WAN) Integrated Services Digital Network (ISDN), the Public Switched telephone Network (PSTN), the Internet, a wireless network, an asynchronous transfer mode (ATM) network, a laser wave network, satellite, mobile and other similar networks are implemented to transfer voice, data and video between the remote data center and a programmer. In the preferred embodiment, wireless communications systems, a modem and laser wave systems are illustrated as examples only and should be viewed without limiting the invention to these types of communications alone. Further, in the interest of simplicity, the applicants refer to the various communications system, in relevant parts, as a communications system. However, it should be noted that the communication systems, in the context of this invention, are interchangeable and may relate to various schemes of cable, fiber optics, microwave, radio, laser and similar communications or any practical combinations thereof.

Some of the distinguishing features of the present invention include the use of a robust web-based expert data center to manage and tune the operational and functional parameters of a plurality of IMDs in real-time. Specifically, the invention enables remote diagnosis, maintenance, upgrade, performance tracking, tuning and adjustment of the IMDs via a programmer. One additional benefit of the present invention is an enhancement of the IMDs using a prescriptive program data set to be implemented, on a proactive basis, in the IMDs by down linking from the programmer thereby upgrading the IMDs to promote the patient's well being.

Yet one of the other distinguishing features of the invention includes the use a highly flexible and adaptable communications scheme to promote continuous and real-time communications between a remote expert data center and a programmer associated with a plurality of IMDs. The IMDs are structured to share information intracorporeally and may interact with the programmer, as a unit. Specifically, the IMDs either jointly or severally can be interrogated to implement or extract clinical information as required. In other words, all of the IMDs may be accessed via one IMD or, in the alternate, each one of the IMDs may be accessed individually. The information collected in this manner may be transferred to the programmer by up linking the IMDs as needed.

Further, the present invention provides significant advantages over the prior art by enabling remote troubleshooting, maintenance and software upgrade to the IMDs. The communications scheme enables remote debugging and analysis of the IMDs via the programmer. In the event a component or software defect is noted, the system is able to check whether a `remote-fix` is possible. If not, the system broadcasts an alert to an operator thus attending to the problem on a real-time basis. In the execution of this function the communications scheme of the present invention performs, inter alia, a review of usage logs, error logs, power and battery status, data base integrity and the mean time between failures status of all the significant and relevant components. Further, patient history, performance parameter integrity and software status are mined from the IMDs via programmer's database and analyzed by an analyzer at the remote expert data center.

The invention provides significant compatibility and scalability to other web-based applications such as telemedicine and emerging web-based technologies such as tele-immersion. For example, the system may be adapted to interface with medical applications in which an interface medical unit may be used to uplink the patient to a remote data center for information exchange between the IMDs and the remote expert data center. More significantly, the invention provides a system and method to remotely install various operational and functional software in the IMDs via a surrogate device which is tailored to provide the required functional capabilities to manage the IMDs.

Specifically, the invention implements a virtual electrophysiologist module (VEM), a chronic monitor module (CMM) and prescriptive program module (PPM) to remotely program IMDs via a programmer or an interface medical unit. The remote communication is facilitated by a web-enabled system utilizing various types of high speed communication media to effect real-time clinical care and therapy to patients with IMDs.

Comments

Popular Posts - Last 30 days

Understanding Vibration and Resonance

Video: New Brain Computer Interface Technology - Steve Hoffman | TEDxCEIBS

The Matrix Deciphered - by Robert Duncan

Secret Testing - EM-Weapon Through Satellite

Mind Control: HAARP & The Future of Technology

U.S. Government Using Electronic Torture to Mimic Mental Illness

Voice to Skull Technology (V2K)

Neuropsychological & Electronic No-Touch Torture Report by Dr. Robert Duncan (used on targeted citizens here in the U.S.)

THE SEQUEL TO THE FALL OF THE CABAL | Parts 1 - 27

Bioeffects Research for Emerging RF Technologies