“Independent Researcher, Librarian, Music Educator and Composer" - Ted Hunter

Patent No. 3967616 Multichannel system for and a multifactorial method of controlling the nervous system of a living organism

 

Patent No. 3967616 

Multichannel system for and a multifactorial method of controlling the nervous system of a living organism (Ross, Jul 6, 1976)

Abstract

A novel method for controlling the nervous system of a living organism for therapeutic and research purposes, among other applications, and an electronic system utilized in, and enabling the practice of, the invented method. Bioelectrical signals generated in specifictopological areas of the organism's nervous system, typically areas of the brain, are processed by the invented system so as to produce a sensory stimulus if the system detects the presence or absence, as the case may be, of certain characteristics in the waveform patterns of the bioelectrical signals being monitored. The coincidence of the same or different characteristics in two or more waveform patterns, or the non-coincidence thereof, may be correlated with a certain desired condition of the organism's nervous system; likewise, with respect to the coincidence or non-coincidence of different characteristics of a single waveform pattern. In any event, the sensory stimulus provided by the invented system, typically an audio or visual stimulus, or combination thereof, is fed back to the organism which associates its presence with the goal of achieving the desired condition of its nervous system. Responding to the stimulus, the organism can be trained to control the waveform patterns of the monitored bioelectrical signals and thereby, control its own nervous system. The results of the coincidence function permit results heretofore unobtainable.

Notes:

 

BACKGROUND OF THE INVENTION

This is a continuation in part application of my earlier copending application filed on Oct. 24, 1972, Ser. No. 299,842, now U.S. Pat. No. 3,837,331 and I hereby specifically incorporate the disclosure of said copending application herein.


1. Field of the Invention

This invention relates in general to the field which has become known as the bio-feedback field, and more particularly to a system for processing multiple bioelectrical signals generated in the nervous system of a living organism and a method for training the organism to control the waveform patterns of its bioelectrical signals for therapeutic or other purposes.

2. Prior Art

Disorders of the nervous system, such as epilepsy, have traditionally been treated by pharmaceuticals and/or surgical procedures. The present invention is based upon the discovery that a living organism, typically an animal high on the intelligence scale, can control its brainwave and nervewave patterns and bring about permanent or long lasting changes thereto by a process of learning; and, further, that the changes induced in the bioelectrical patterns can be such as to result in the substantial control of epileptic seizures, hyper-kinesis and insomnia. This therapeutic approach has also been shown to be useful in correcting motor disorders such as the loss of motor control attributable to a spinal cord lesion. Thus, the present invention provides a safe and practical method and system enabling the application of this discovery in many fields including neurological therapy and brain research.

In the prior art, bio-feedback training has been conducted with respect to only one area of an organism's nervous system at a time. My earlier invention, disclosed in U.S. Pat. No. 3,837,331, is of this type. It discloses a means and method whereby a single bioelectrical signal is detected at a specific topological location in the nervous system of a living organism. Means are disclosed for detecting a particular electrical characteristic of interest in the single signal and, if it is present, feeding back to the organism a sensory indication of its presence. By this means and method, the organism can be trained to alter the waveform pattern of a bioelectrical signal detected in its nervous system. Heretofore, the prior art has not disclosed means or a method for training a living organism to alter multiple characteristics in the waveform pattern of a single bioelectrical signal, or multiple characteristics in the waveform patterns of a plurality of such signals. The present invention is based upon the discovery that a living organism can learn to alter multiple characteristics of one or more bioelectrical signals in its nervous system at the same time, thereby achieving new and beneficial results. In view of this discovery, the present invention teaches a means and a method by which such multiple-characteristic alteration training can be carried out.

In the case of an epileptic with a specific "focus", bio-feedback training of one area of the brain, as disclosed in the prior art, may be sufficient. However, when no focus can be located, bio-feedback training with respect to complementary area of both the right and left hemispheres of the brain may prove to be advantageous. In another, more typical case, an epileptic or insomniac may be trained to produce a specific brain wave characteristic while simultaneously depressing a different characteristic in the same or another bioelectrical signal. Thus, the present invention enables the bio-feedback training of more than one area of the organism's nervous system to take place simultaneously, or to be otherwise synchronized. Such multilateral and synchronized training has generally been found to be more effective than the sequential training of different areas of the nervous system, because it necessarily involves the concurrent and interrelated participation of all the areas. It should be noted that, in sequential bio-feedback training, the training of one area of the nervous system, e.g., the right side of the brain, has little or no effect on the other areas, e.g., the left side of the brain. A further advantage of this invention, in that training time can be substantially reduced by virtue of the capability for simultaneous training of two or more areas of the nervous system.

It should be understood that multi-signal processing, as described herein, is not just the unrelated processing of two or more signals at the same time from the same person. To the contrary, it involves the simultaneous and/or time related interaction of two or more related or unrelated characteristics of one or more bioelectrical signals of the nervous sytem.

Some biological feedback systems of the prior art often use a carrier signal modulated by the bioelectrical signal. No such modulation is part of the present invention. Systems of the prior art often include means for shifting the phase of the feedback signal with respect to the original bioelectrical signal. In the present invention, the phase relationship between the bioelectrical signal and the feedback signal is of no particular importance. Further, the present invention does not require means for impressing an electrical signal and, therefore, electrical current, into a living organism. Consequently, it is substantially safe to its subjects while they are being treated or otherwise participating in the invented method.

BRIEF SUMMARY OF THE INVENTION

The present invention is essentially a uniquely interrelated, multi-channel extension of the invention disclosed in my copending application, Ser. No. 299,842, now U.S. Pat. No. 3,837,331.

Each channel is comprised of a means for detecting bioelectrical signals generated in a specific topological region of the nervous system of a living organism, typically a human being or other intelligent animal, and means for detecting the presence or absence of particular characteristics of the detected signal. Typical means for detecting the bioelectrical signal are the electroencephalograph (EEG) recorder and the polygraph recorder. The means for detecting the presence or absence of particular waveform characteristics include conventional frequency filters, rectifiers, integrators and amplitude comparators, as more fully described hereinbelow.

As already indicated, the present invention contemplates two or more channels for processing one or more bioelectrical signals. Each channel of the invented system outputs an electrical signal which indicates the presence of one or more characteristics in the waveform pattern of the bioelectrical signal processed; e.g., the presence of certain frequencies therein, and/or a minimum signal amplitude in a particular range of frequencies. The outputs of the signal processing channels are all fed to a configuration of logical elements referred to, for convenience, as the "coincidence detector". The elements of the coincidence detector are configured to provide a discrete output only if and when a particular combination of signals are present and/or absent at the outputs of the channels, thus indicating the presence and/or absence of certain characteristics in the waveforms of the corresponding bioelectrical signal; the latter are correlated with a certain desired condition of the subject's nervous system. The coincidence detector is comprised of conventional logical elements such as AND, NAND, OR, and EXCLUSIVE OR gates.

The output, if any, of the coincidence detector is fed to a means for transducing an electrical signal into a sensory stimulus for presentation to the organism. Suitable timing circuitry may be incorporated between the output of the coincidence detector and the transducing means in applications wherein the discrete output from the coincidence detector must persist for a minimum duration before a sensory stimulus is presented. Other timing circuitry may also be incorporated to control (i) the time interval elapsing between the presentation of successive sensory stimuli (ii) the duration for which the sensory stimulus is presented, and/or (iii) the time interval during which the coincidence detector is inhibited from receiving inputs after an incorrect characteristic is detected.

The invented method requires the subject organism, utilizing its cognitive powers, to alter the particular characteristics of the detected bioelectrical signals so as to cause the sensory stimulus presented to it to change in a preconceived manner; e.g., turn on a light or advance a counter. The preconceived condition of the sensory stimulus is, of course, related to certain desired waveform patterns of the originally detected bioelectrical signals, or more specifically, to the attainment of one or more desired characteristics in those signals.

By repeatedly exercising a subject in the manner just described, i.e., by extensive training utilizing the present invention, the subject can learn to control its brainwave or nervewave patterns for therapeutic or other purposes. For example, the present invention can be used to help eliminate certain frequency components found in the brainwave patterns of persons suffering from epilepsy. In cases of epileptic cerebral behavior, where no specific focus is located, bioelectrical signals may be taken from each hemisphere of the brain and processed simultaneously through separate channels of the invented system. Thus, pertinent characteristics of the two hemispheric brainwave patterns may be correlated and cerebral behavior peculiarly related to bilateral activity may be detected and modified.

The topological locations, in the organism's nervous system where detection is to take place is a function of the user's objective. Thus, if the present invention is to be used for epileptic therapy, the regions of the brain known to be involved in epileptic seizures would be subjected to the EEG investigation. Conversely, where there is now inadequate correlation between the topology of the nervous system and its functions, the present invention provides a useful research tool capable of substantially enhancing the topological "mapping" of an organism's nervous system.

The particular characteristics of the detected bioelectrical signal which are of interest to the user are also a function of his objective. In the case of epileptic therapy, for example, the presence and amplitude of certain frequency components in the clinical EEG have been correlated with seizures. Thus, in the latter application, it is the frequency spectrum of the bioelectrical signal which is of interest. In other applications it may be desirable or necessary to detect the coincidence or non-coincidence of particular waveform characteristics in two or more bioelectrical signals, or the presence or absence of electrical or electrochemical activity at one or more locations in the nervous system. In still other applications, the duration for which certain bioelectrical signals are present may be a significant parameter requiring detection. For this reason it should be understood that the invented system is not a fixed single structure but rather a basic combination of means whose specific embodiments are adapted to suit particular applications. Similarly, the invented system is typically tuned and calibrated in accordance with the requirements of each application to which it is to be applied. This invention also contemplates the combination of means sufficient to enable multi-purpose use in a number of applications either simultaneously or by sequential selection.

Thus, it is a principal object of this invention to provide a practical and safe method and system to enable a living organism to control significant characteristics of its nervous system.

Another principal object of this invention is to provide a therapeutic means for the control of certain disorders of the nervous system.

A still further object of the invention is to provide a flexible tool for neurological research including topological mapping of the nervous system.

Other objects, novel features and advantages of the present invention will become apparent upon making reference to the following detailed description and the accompanying drawings. The description and the drawings will also further disclose the characteristics of this invention, both as to its structure and its mode of operation. Although a preferred embodiment of the invention is described hereinbelow, and shown in the accompanying drawings, it is expressly understood that the description and drawings thereof are for the purpose of illustration only and do not limit the scope of this invention.

Comments

Popular Posts - Last 30 days

The Matrix Deciphered - by Robert Duncan

Patent No. 6238333 Remote magnetic manipulation of nervous systems

Video: New Brain Computer Interface Technology - Steve Hoffman | TEDxCEIBS

Full Documentary | “An Invisible Threat — Are Microwave Radiation Waves Killing Us?”

Secret Testing - EM-Weapon Through Satellite

Declassified US Air Force Directed Energy Bio-Behavioral Research (DEBR) Contracts Reveal Weapons-Testing on Humans Using Counter-Personnel Radio Frequency High Power Microwave (RF HPM) Weapons

Gangstalkers Record Brain Frequencies for Torture with Electronic and Acoustic Weapons

Bioeffects Research for Emerging RF Technologies

Long Range Acoustic Device – LRAD

U.S. Government Using Electronic Torture to Mimic Mental Illness