“Independent Researcher, Librarian, Music Educator and Composer" - Ted Hunter

Patent No. 6234979 Computerized method and device for remediating exaggerated sensory response in an individual with an impaired sensory modality

 

Patent No. 6234979

Computerized method and device for remediating exaggerated sensory response in an individual with an impaired sensory modality (Merzenich, May 22, 2001)

Abstract

The present invention provides a method and apparatus for implementing a training regimen which alleviates exaggerated sensory, perceptual, cognitive and/or emotional response problems. For example, in the aural domain, some autistic individuals are hypersensitive to one of the senses, e.g., sound. As discussed above, sounds at the specific frequency can cause discomfort to these autistic individuals even when presented at an intensity level which normally is not perceived as being too loud by most individuals. Similarly, tinnitus afflicted individuals also suffer from disconcerting perceived ringing sensations in their ears. The present invention hypothesizes that a catastrophic cascade of responses within a "supergroup" of auditory neurons is triggered by a hypersensitive response to a particular frequency or range of frequencies. The self sustaining cascade is very much like an epileptic seizure in which the sudden involuntary response of a relatively small group of neurons trigger responses in a supergroup of neurons located in the motor control region of the brain. In accordance with the present invention, the abnormally sensitive response problem associated with supergroups can be substantially alleviated via a remedial training regimen which emphasizes the redevelopment of the afflicted individual's ability to make fine sensory distinctions and/or the improvement of the individual's differential sensory acuteness. Providing the regimen to the individual consistently over a period of time increases the likelihood of normal or near normal sensory ability returning.

Notes:

SUMMARY OF THE INVENTION

The present invention provides a method and apparatus for implementing a training regimen which alleviates exaggerated sensory, perceptual, cognitive and/or emotional response problems.

For example, in the aural domain, some autistic individuals are hypersensitive to one of the senses, e.g., sound. As discussed above, sounds at the specific frequency can cause discomfort to these autistic individuals even when presented at an intensity level which normally is not perceived as being too loud by most individuals. These individuals appear to integrate their perception of individual frequencies within a spectrum of otherwise differentiable frequencies. Similarly, tinnitus afflicted individuals also suffer from disconcerting perceived ringing sensations in their ears.

The present invention hypothesizes that a catastrophic cascade of responses within a "supergroup" of auditory neurons is triggered by a hypersensitive response to a particular frequency or range of frequencies. The self sustaining cascade is very much like an epileptic seizure in which the sudden involuntary response of a relatively small group of neurons trigger responses in a supergroup of neurons located in the motor control region of the brain.

Similarly, in the visual domain, some individuals, when engaged in video games in a noisy and dimly lit video arcade environment with lots of loud sounds occurring in association with "bright flashes", e.g., exploding targets, experience the supergroup phenomenon. These loud flashes tend to drive the entire visual system in synchrony (both fovial and peripheral vision) and activate large portions of the retina as well as the auditory system. These large volleys of multimodal synchronous neural activity can cause multiple supergroup responses in subjects who are hypersensitive in the visual domain and probably in the auditory domain. In such individuals, the multimodal supergroup response can cascade and cause a supergroup response in the motor control neural domain, thereby triggering an epileptic seizure.

The present invention also hypothesizes that while the above described supergroup phenomenon can either be acquired through destructive learning and can be aggravated by postnatal injury. The supergroup trait is often but not necessarily accompanied by a genetic disposition, i.e., the afflicted individuals are born with the trait or propensity for acquiring the supergroup trait. In some afflicted individuals, prenatal injury or prenatal developmental problems are a likely root cause of the supergroup trait, i.e., no destructive learning or postnatal injury has occurred; a good example being the autistic individual.

In accordance with the present invention, the abnormally sensitive response problem associated with supergroups can be substantially alleviated via a remedial training regimen which emphasizes the redevelopment of the afflicted individual's ability to make fine sensory distinctions andlor the improvement of the individual's differential sensory acuteness. Providing the regimen to the individual consistently over a period of time increases the likelihood of normal or near normal sensory ability returning.

In one embodiment of the trainer for remediating exaggerated responses associated a supergroup of neurons in an individual with an associated impaired modality, the trainer includes a stimulator and an input device. The stimulator provides a first stimulus to the individual which substantially corresponds to a first boundary of the supergroup of neurons. The input device receives feedback from the individual indicating the intensity of the individual's response to the first stimulus. In accordance with the invention, a controller, operatively coupled to the stimulator, adaptively modifies the first stimulus based on feedback received from the individual, thereby gradually reducing the sensitivity of the supergroup while avoiding an exaggerated response to the first stimulus.

In another embodiment, the stimulator provides a first and second stimulus which substantially corresponds to a first and second boundary of the supergroup of neurons. The input device receives feedback from the individual indicating the intensity of the individual's response to the first and second stimulus. The controller adaptively modifies the first or second stimulus based on feedback received from the individual, thereby gradually reducing the sensitivity of the supergroup while avoiding an exaggerated response to either the first or second stimulus

------------------------------------------

Many modifications are possible. For example, the present invention can be practiced with or without feedback. Feedback can be manual or automated. Manual feedback can provide an indication that an input is causing discomfort or pain, or the individual is able to distinguish the stimuli. Examples of automated feedback include brain imaging such as MEG and fMRI to monitor changes and responses within the supergroup. Other potentially useful automated feedback indicators include pulse, body temperature, respiratory rate, and blood pressure.

While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, and equivalents which fall within the scope of this invention. For example, while the above-described training regimen addresses a singular uni-modal supergroup, it is possible to remediate multiple supergroups, including cross-modal supergroup(s), either concurrently or consecutively. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.

Comments

Popular Posts - Last 30 days

The Matrix Deciphered - by Robert Duncan

Patent No. 6238333 Remote magnetic manipulation of nervous systems

Video: New Brain Computer Interface Technology - Steve Hoffman | TEDxCEIBS

Full Documentary | “An Invisible Threat — Are Microwave Radiation Waves Killing Us?”

Secret Testing - EM-Weapon Through Satellite

Declassified US Air Force Directed Energy Bio-Behavioral Research (DEBR) Contracts Reveal Weapons-Testing on Humans Using Counter-Personnel Radio Frequency High Power Microwave (RF HPM) Weapons

Gangstalkers Record Brain Frequencies for Torture with Electronic and Acoustic Weapons

Bioeffects Research for Emerging RF Technologies

Long Range Acoustic Device – LRAD

U.S. Government Using Electronic Torture to Mimic Mental Illness