“Independent Researcher, Librarian, Music Educator and Composer" - Ted Hunter

Patent No. 6512529 Apparatus for and method of transmitting and receiving data streams representing 3-dimensional virtual space

 

Patent No. 6512529

Apparatus for and method of transmitting and receiving data streams representing 3-dimensional virtual space (Naka, et al., Jan 28, 2003)

Abstract

An apparatus for and a method of transmitting and receiving data streams representing 3-dimensional virtual space, the apparatus comprising: a transmitting member; a receiving member; and a transfer member for connecting the transmitting member and the receiving member in bidirectional manner; wherein a shape data stream, a motion data stream and an audio data stream representing a shape and a motion of a skeletal structure in 3-DCG and a sound synchronous with the motion, respectively are transmitted to the receiving member from the transmitting member such that the receiving member generates the 3-DCG through synchronization of the motion data stream and the audio data stream.

Notes:

SUMMARY OF THE INVENTION

One aspect of the present invention seeks to provide the operator with a rapid means of exposing/hiding information in windows. Another aspect of the invention seeks to provide a method and system for updating images which reside beneath a window.

With regard to the first aspect, the present invention provides a method and user interface technique that allows the operator to maintain a large number of windows all containing information necessary for the operator to perform his task, while at the same time not obscuring other windows which are essential to perform the task. This approach significantly increases operator productivity and also increases safety when employed in safety critical applications since it permits the operator to maintain maximum awareness of the main safety critical situation window, while still providing immediate access to the other information necessary for the operator to perform his task.

The invention operates in a standard environment of computer workstation with a graphical display. Information is displayed in "windows " on the graphical display, and the operator interacts with the display with standard input devices such as a keyboard and a mouse. This invention may be embodied in an application program that executes on the workstation or any other type of program, including the Operating System which controls the workstation.

This invention consists of a user interface which provides the operator with a rapid means to expose and hide information in invisible windows. When the information in windows is hidden, the "invisible" windows can be totally invisible (i.e., there is no visual indication of their location), the windows may have a title bar that is visible, the windows may have a window border that is visible, or the windows may have a title bar and window border that is visible. These latter states provide the operator with a visual clue as to the location of the hidden window. In all these cases, the contents of the invisible window are not displayed and the background window is fully visible through the invisible window.

The user is provided the ability to designate each invisible window as "normal", "timed", "locked", or timed icon". The user is also able to reduce an invisible window to an icon at any time. When an invisible window is reduced to an icon no window operations can be performed on the window until the icon is raised back into an invisible window.

When in "normal" mode, the contents of the window are exposed when the cursor moves into the area of the window. The window contents can be exposed either by allowing the window to be displayed on an opaque background, which enhances legibility of the window contents, or on a transparent background, which enables the contents of the background windows to be visible underneath the invisible window. The window contents are hidden again by simply moving the cursor away from the window.

In "timed" mode, the contents of the window are exposed in the manner described above for a specified period of time, at which time the window automatically returns to its invisible state. In the "locked" mode, the contents of the window are exposed in the opaque manner described above until another mode is selected for the window. In the "timed icon" mode, the contents of the window are exposed in the manner described above for a specified period of time, at which time the window is automatically reduced to an icon.

With regard to the second aspect, the invention can render windows which are not directly contained in the computer's native windows and provides unique drawing strategies to ensure that updates occur to data that lay beneath a given window.

Thus, windows can occupy the same display area, yet the operator can rapidly select which objects to view without losing situational awareness. The expense of larger screen surface area and the restriction of dedicated table/menu areas is eliminated.

Comments

Popular Posts - Last 30 days

Understanding Vibration and Resonance

Video: New Brain Computer Interface Technology - Steve Hoffman | TEDxCEIBS

The Matrix Deciphered - by Robert Duncan

Secret Testing - EM-Weapon Through Satellite

Mind Control: HAARP & The Future of Technology

U.S. Government Using Electronic Torture to Mimic Mental Illness

Voice to Skull Technology (V2K)

Neuropsychological & Electronic No-Touch Torture Report by Dr. Robert Duncan (used on targeted citizens here in the U.S.)

THE SEQUEL TO THE FALL OF THE CABAL | Parts 1 - 27

Bioeffects Research for Emerging RF Technologies